Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.298
Filtrar
1.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
2.
J Biomed Sci ; 31(1): 37, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627751

RESUMO

BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.


Assuntos
Doença de Huntington , Humanos , Camundongos , Animais , Lactente , Doença de Huntington/genética , Estudos Transversais , Hipercapnia , Encéfalo , Modelos Animais de Doenças , Perfusão
3.
J Neuroradiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637231

RESUMO

BACKGROUND: Thrombectomy with a stent retriever (SR) may lead to intracranial hemorrhage due to vessel displacement. We aimed to explore factors related to vessel displacement using an in vitro vessel model. METHODS: A vessel model mimicking two-dimensional left internal carotid angiography findings was used in this study. Six SR types (Solitaire 3 × 40, 4 × 40, and 6 × 40; Embotrap 5 × 37; Trevo 4 × 41; and Tron 4 × 40) were fully deployed in the M2 ascending, M2 bend, or M1 horizontal portion. Subsequently, the SR was retracted, and the vessel displacement, maximum SR retraction force, and angle of the M2 bend portion were measured. A total of 180 SR retraction experiments were conducted using 6 SR types at 3 deployment positions with 10 repetitions each. RESULTS: The mean maximum distance of vessel displacement for Embotrap Ⅲ 5 × 37 (6.4 ± 3.5 mm, n = 30) was significantly longer than that for the other five SR types (p = 0.029 for Solitaire 6 × 40 and p < 0.001 for the others, respectively). Vessel displacement was significantly longer in the M2 ascending portion group (5.4 ± 3.0 mm, n = 60) than in the M2 bend portion group (3.3 ± 1.6 mm, n = 60) (p < 0.001) and it was significantly longer in the M2 bend portion group than in the M1 horizontal portion group (1.1 ± 0.7 mm, n = 60) (p < 0.001). A positive correlation existed between the mean maximum SR retraction force or mean angle of the M2 bend portion due to SR retraction (i.e., vessel straightening) and the mean maximum distance of vessel displacement (r = 0.90, p < 0.001; r = 0.90, p < 0.001, respectively). CONCLUSIONS: Vessel displacement varied with the SR type, size, and deployment position. Moreover, vessel displacement correlated with the SR retraction force or vessel straightening of the M2 bend portion.

4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612704

RESUMO

This study investigates the toxic effect of harmful materials, unfiltered by the placenta, on neonatal umbilical cord (UC) vessels, focusing on stress-induced adaptations in transcriptional and translational processes. It aims to analyze changes in pathways related to mRNA condensate formation, transcriptional regulation, and DNA damage response under maternal smoking-induced stress. UC vessels from neonates born to smoking (Sm) and nonsmoking mothers (Ctr) were examined. Immunofluorescence staining and confocal microscopy assessed the localization of key markers, including Transcription Complex Subunit 1 (CNOT1) and the largest subunit of RNA polymerase II enzyme (RPB1). Additionally, markers of DNA damage response, such as Poly(ADP-ribose) polymerase-1, were evaluated. In Sm samples, dissolution of CNOT1 granules in UC vessels was observed, potentially aiding stalled translation and enhancing transcription via RPB1 assembly and translocation. Control vessels showed predominant cytoplasmic RPB1 localization. Despite adaptive responses, Sm endothelial cells exhibited significant damage, indicated by markers like Poly(ADP-ribose) polymerase-1. Ex vivo metal treatment on control vessels mirrored Sm sample alterations, emphasizing marker roles in cell survival under toxic exposure. Maternal smoking induces specific molecular adaptations in UC vessels, affecting mRNA condensate formation, transcriptional regulation, and DNA damage response pathways. Understanding these intricate molecular mechanisms could inform interventions to improve neonatal health outcomes and mitigate adverse effects of toxic exposure during pregnancy.


Assuntos
Distrofias de Cones e Bastonetes , Células Endoteliais , Recém-Nascido , Humanos , Feminino , Gravidez , Regulação da Expressão Gênica , Transcrição Gênica , Poli(ADP-Ribose) Polimerases , RNA Mensageiro/genética , Fatores de Transcrição
5.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580026

RESUMO

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.

6.
J Nanobiotechnology ; 22(1): 206, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658950

RESUMO

The insufficient abundance and weak activity of tumour-infiltrating lymphocytes (TILs) are two important reasons for the poor efficacy of PD-1 inhibitors in hepatocellular carcinoma (HCC) treatment. The combined administration of tanshinone IIA (TSA) and astragaloside IV (As) can up-regulate the abundance and activity of TILs by normalising tumour blood vessels and reducing the levels of immunosuppressive factors respectively. For enhancing the efficacy of PD-1 antibody, a magnetic metal-organic framework (MOF) with a homologous tumour cell membrane (Hm) coating (Hm@TSA/As-MOF) is established to co-deliver TSA&As into the HCC microenvironment. Hm@TSA/As-MOF is a spherical nanoparticle and has a high total drug-loading capacity of 16.13 wt%. The Hm coating and magnetic responsiveness of Hm@TSA/As-MOF provide a homologous-magnetic dual-targeting, which enable Hm@TSA/As-MOF to counteract the interference posed by ascites tumour cells and enhance the precision of targeting solid tumours. Hm coating also enable Hm@TSA/As-MOF to evade immune clearance by macrophages. The release of TSA&As from Hm@TSA/As-MOF can be accelerated by HCC microenvironment, thereby up-regulating the abundance and activity of TILs to synergistic PD-1 antibody against HCC. This study presents a nanoplatform to improve the efficacy of PD-1 inhibitors in HCC, providing a novel approach for anti-tumour immunotherapy in clinical practice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Metalorgânicas , Receptor de Morte Celular Programada 1 , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Animais , Camundongos , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Saponinas/farmacologia , Saponinas/química , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia
7.
Med Acupunct ; 36(2): 79-86, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659726

RESUMO

Objective: Ear acupuncture, as a system for treating and preventing diseases through stimulation of points on the auricle, has been systematically introduced during the last 60 years. Although the auricular cartography was described somatotopically as an inverted fetus by Paul Nogier, MD, the underlying mechanism of auricular stimulation remains unclear. The aim of this research was to gain an understanding of the structural basis of auricular stimulation, as well as showing the distribution of the nerve fibers, and the blood and lymphatic vessels. Materials and Methods: The distribution of nerve fibers, and blood and lymphatic vessels was examined in whole-mount auricular skins of mice by combining the biomarkers protein gene product 9.5, cluster of differentiation 31, and lymphatic-vessel endothelial hyaluronan receptor-1 following tissue-clearing treatment with multiple immunofluorescent staining. Results: The labeled nerve fibers, and the blood and lymphatic vessels were distributed extensively in the inner and outer parts of the auricular skin. Auricular nerves aligning with blood vessels ran from the basal region to the peripheral region and crossed over lymphatic vessels, thus forming the neural, vascular, and lymphatic networks. Conclusions: As these are important tissue components of auricular skin, this result implies that the auricular nerve fibers, and blood and lymphatic vessels may coordinate with each other to respond directly to auricular stimulation.

8.
Br J Pharmacol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651236

RESUMO

BACKGROUND AND PURPOSE: The single layer of cells lining all blood vessels, the endothelium, is a sophisticated signal co-ordination centre that controls a wide range of vascular functions including the regulation of blood pressure and blood flow. To co-ordinate activities, communication among cells is required for tissue level responses to emerge. While a significant form of communication occurs by the propagation of signals between cells, the mechanism of propagation in the intact endothelium is unresolved. EXPERIMENTAL APPROACH: Precision signal generation and targeted cellular manipulation was used in conjunction with high spatiotemporal mesoscale Ca2+ imaging in the endothelium of intact blood vessels. KEY RESULTS: Multiple mechanisms maintain communication so that Ca2+ wave propagation occurs irrespective of the status of connectivity among cells. Between adjoining cells, regenerative IP3-induced IP3 production transmits Ca2+ signals and explains the propagated vasodilation that underlies the increased blood flow accompanying tissue activity. The inositide is itself sufficient to evoke regenerative phospholipase C-dependent Ca2+ waves across coupled cells. None of gap junctions, Ca2+ diffusion or the release of extracellular messengers is required to support this type of intercellular Ca2+ signalling. In contrast, when discontinuities exist between cells, ATP released as a diffusible extracellular messenger transmits Ca2+ signals across the discontinuity and drives propagated vasodilation. CONCLUSION AND IMPLICATIONS: These results show that signalling switches underlie endothelial cell-to-cell signal transmission and reveal how communication is maintained in the face of endothelial damage. The findings provide a new framework for understanding wave propagation and cell signalling in the endothelium.

9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 523-532, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597444

RESUMO

OBJECTIVE: To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism. METHODS: SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes, and histological changes of the thoracic aorta were evaluated using HE staining. In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings, the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine (NE)- and KCl-induced constriction. The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester, indomethacin, zinc protoporphyrin Ⅸ, tetraethyl ammonium chloride, glibenclamide, barium chloride, Iberiotoxin, 4-aminopyridine, or TASK-1-IN-1. The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release. RESULTS: Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology. While not obviously affecting resting aortic rings with intact endothelium, asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE, but its effects differed between endothelium-intact and endothelium-denuded rings. In endothelium-intact aortic rings pretreated with indomethacin, ZnPP Ⅸ, barium chloride, glyburide, TASK-1-IN-1 and 4-aminopyridine, asiaticoside did not produce significant effect on NE-induced vasoconstriction, and tetraethylammonium, Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside. In KCland NE-treated rings, asiaticoside obviously inhibited CaCl2-induced vascular contraction. CONCLUSION: Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening, promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow, thereby reducing systolic blood pressure in rats.


Assuntos
Aorta Torácica , Compostos de Bário , Cloretos , Triterpenos , Vasodilatação , Ratos , Animais , Pressão Sanguínea , Células Endoteliais , Cálcio , Cloreto de Cálcio/farmacologia , Nitroarginina/farmacologia , Ratos Sprague-Dawley , 4-Aminopiridina/farmacologia , Indometacina/farmacologia , Ésteres/farmacologia , Endotélio Vascular , Relação Dose-Resposta a Droga
10.
Acta Neuropathol Commun ; 12(1): 45, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509621

RESUMO

Interactions between extracellular matrix (ECM) proteins and ß1 integrins play an essential role maintaining vascular integrity in the brain, particularly under vascular remodeling conditions. As blood vessels in the spinal cord are reported to have distinct properties from those in the brain, here we examined the impact of ß1 integrin inhibition on spinal cord vascular integrity, both under normoxic conditions, when blood vessels are stable, and during exposure to chronic mild hypoxia (CMH), when extensive vascular remodeling occurs. We found that a function-blocking ß1 integrin antibody triggered a small degree of vascular disruption in the spinal cord under normoxic conditions, but under hypoxic conditions, it greatly enhanced (20-fold) vascular disruption, preferentially in spinal cord white matter (WM). This resulted in elevated microglial activation as well as marked loss of myelin integrity and reduced density of oligodendroglial cells. To understand why vascular breakdown is localized to WM, we compared expression levels of major BBB components of WM and grey matter (GM) blood vessels, but this revealed no obvious differences. Interestingly however, hypoxyprobe staining demonstrated that the most severe levels of spinal cord hypoxia induced by CMH occurred in the WM. Analysis of brain tissue revealed a similar preferential vulnerability of WM tracts to show vascular disruption under these conditions. Taken together, these findings demonstrate an essential role for ß1 integrins in maintaining vascular integrity in the spinal cord, and unexpectedly, reveal a novel and fundamental difference between WM and GM blood vessels in their dependence on ß1 integrin function during hypoxic exposure. Our data support the concept that the preferential WM vulnerability described may be less a result of intrinsic differences in vascular barrier properties between WM and GM, and more a consequence of differences in vascular density and architecture.


Assuntos
Substância Branca , Humanos , Substância Branca/metabolismo , Integrina beta1/metabolismo , Remodelação Vascular/fisiologia , Medula Espinal/metabolismo , Substância Cinzenta/metabolismo , Hipóxia/metabolismo
11.
World J Stem Cells ; 16(2): 137-150, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455095

RESUMO

Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.

12.
Australas J Ultrasound Med ; 27(1): 42-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38434542

RESUMO

Introduction: Clinical verification of rheumatoid vasculitis (RV) persists as a mid-to-late diagnosis with medical imaging or biopsy. Early and subclinical presentations of RV, in particular, can remain underdiagnosed in the absence of adequate diagnostic testing. In this study, the research demonstrated the precursory changes for RV in patients with rheumatoid arthritis (RA) using non-invasive ultrasound imaging of a peripheral vessel. Method: Six participants were recruited: three participants with (RA) and three age- and gender-matched healthy controls. All participants completed a Foot Health Survey Questionnaire (FHSQ), and participants with RA completed a Rheumatoid Arthritis Disease Activity Index-5 (RADAI-5). Bilateral B-mode and Doppler ultrasound of the dorsalis pedis artery (DPA) was performed. The degree of inflammation, lumen and artery diameters, lumen diameter-to-artery diameter ratio and peak systolic velocity in the proximal DPA were compared between the two groups. Results: The mean RADAI-5 score (5.4 ± 0.8 out of 10) indicated moderate disease activity amongst participants with RA. Inflammation was observed in the DPA wall in all participants with RA, compared to no inflammation observed in the control group (Friedmans two-way analysis: χ2 = 15.733, P = 0.003). Differences between groups for inflammation, lumen diameter and lumen diameter-to-artery diameter ratio were found (P < 0.034), without differences for artery diameter and peak systolic velocity (P > 0.605). DPA wall inflammation did not correlate with FHSQ scores (r = -0.770, P = 0.073). Conclusion: Despite moderate RA disease activity, this is the first study to demonstrate the use of ultrasound to observe inflammation in small vessel disease. Our findings suggest ultrasound imaging may be a viable screening tool to demonstrate arterial wall inflammation, indicating the precursory changes of RV.

13.
Exp Physiol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445814

RESUMO

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.

14.
Eur Radiol Exp ; 8(1): 45, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472565

RESUMO

BACKGROUND: Phase-contrast magnetic resonance imaging (PC-MRI) quantifies blood flow and velocity noninvasively. Challenges arise in neurovascular disorders due to small vessels. We evaluated the impact of voxel size, number of signal averages (NSA), and velocity encoding (VENC) on PC-MRI measurement accuracy and precision in a small-lumen vessel phantom. METHODS: We constructed an in vitro model with a constant flow rate using a 2.2-mm inner diameter plastic tube. A reservoir with a weight scale and timer was used as standard reference. Gradient-echo T1 weighted PC-MRI sequence was performed on a 3-T scanner with varying voxel size (2.5, 5.0, 7.5 mm3), NSA (1, 2, 3), and VENC (200, 300, 400 cm/s). We repeated measurements nine times per setting, calculating mean flow rate, maximum velocity, and least detectable difference (LDD). RESULTS: PC-MRI flow measurements were higher than standard reference values (mean ranging from 7.3 to 9.5 mL/s compared with 6.6 mL/s). Decreased voxel size improved accuracy, reducing flow rate measurements from 9.5 to 7.3 mL/s. The LDD for flow rate and velocity varied between 1 and 5%. The LDD for flow rate decreased with increased voxel size and NSA (p = 0.033 and 0.042). The LDD for velocity decreased with increased voxel size (p < 10-16). No change was observed when VENC varied. CONCLUSIONS: PC-MRI overestimated flow. However, it has high precision in a small-vessel phantom with constant flow rate. Improved accuracy was obtained with increasing spatial resolution (smaller voxels). Improved precision was obtained with increasing signal-to-noise ratio (larger voxels and/or higher NSA). RELEVANCE STATEMENT: Phase-contrast MRI is clinically used in large vessels. To further investigate the possibility of using phase-contrast MRI for smaller intracranial vessels in neurovascular disorders, we need to understand how acquisition parameters affect phase-contrast MRI-measured flow rate and velocity in small vessels. KEY POINTS: • PC-MRI measures flow and velocity in a small lumen phantom with high precision but overestimates flow rate. • The precision of PC-MRI measurements matches the precision of standard reference for flow rate measurements. • Optimizing PC-MRI settings can enhance accuracy and precision in flow rate and velocity measurements.


Assuntos
Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Imagens de Fantasmas , Reprodutibilidade dos Testes
15.
Curr Med Imaging ; 20: 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389355

RESUMO

OBJECTIVE: To explore the development of a mind map-based predictive nursing protocol and assess its impact on the quality of images in patients undergoing high-concentration contrast three-dimensional computed tomography (CT) imaging of liver blood vessels. METHODS: A total of 600 patients who were admitted to Beijing You an Hospital were chosen for this prospective study and underwent high-concentration contrast three-dimensional CT imaging of liver blood vessels between April 2021 and December 2021. The patients were divided into two groups using the digital table method, with 300 cases. The control group received conventional nursing intervention, while the research group was provided with a mind map-based predictive nursing protocol. We recorded the image quality of three-dimensional CT imaging of liver blood vessels, satisfaction scores regarding nurse examination guidance, and the Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) in both groups. RESULTS: The research group achieved a perfect rate of 100.00% for the high-quality three-dimensional CT imaging of liver blood vessels, which was noticeably higher compared to the rate of the control group of 98.67%. Patients in the research group expressed higher satisfaction levels regarding the guidance provided by nurses, including their attitude, timeliness, accuracy, and overall satisfaction, compared to the control group. Initially, the two groups had no notable differences in the SAS and SDS scores. However, after the intervention, both groups experienced a significant decrease in SAS and SDS scores, with the research group showing an even more substantial decline. CONCLUSION: Through the creation of a mind map-based predictive nursing protocol and its implementation on patients undergoing high-concentration contrast three-dimensional CT imaging of liver blood vessels, it is possible to significantly enhance the quality of CT scans, alleviate feelings of anxiety and depression, increase patient satisfaction with examination guidance by nurses, and effectively decrease the occurrences of contrast agent leakage and allergic reactions to iodine.


Assuntos
Meios de Contraste , Iodo , Humanos , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Fígado/diagnóstico por imagem
16.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339562

RESUMO

Accurate geometric modeling of blood vessel lumen from 3D images is crucial for vessel quantification as part of the diagnosis, treatment, and monitoring of vascular diseases. Our method, unlike other approaches which assume a circular or elliptical vessel cross-section, employs parametric B-splines combined with image formation system equations to accurately localize the highly curved lumen boundaries. This approach avoids the need for image segmentation, which may reduce the localization accuracy due to spatial discretization. We demonstrate that the model parameters can be reliably identified by a feedforward neural network which, driven by the cross-section images, predicts the parameter values many times faster than a reference least-squares (LS) model fitting algorithm. We present and discuss two example applications, modeling the lower extremities of artery-vein complexes visualized in steady-state contrast-enhanced magnetic resonance images (MRI) and the coronary arteries pictured in computed tomography angiograms (CTA). Beyond applications in medical diagnosis, blood-flow simulation and vessel-phantom design, the method can serve as a tool for automated annotation of image datasets to train machine-learning algorithms.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Algoritmos , Redes Neurais de Computação
17.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328111

RESUMO

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n=6 Alzheimer's disease (AD), and n=6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.

18.
Heliyon ; 10(3): e25211, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327464

RESUMO

Introduction: Femoral neck fractures are challenging injuries associated with a compromised blood supply to the femoral head, leading to a high risk of avascular necrosis and poor clinical outcomes. This study aimed to investigate the efficacy of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Methods: Ten Landrace pigs were used as experimental animal models. The femoral head was completely removed after femoral neck sub-cephalic fracture. It was fixed on the medial side of the knee joint, and the blood supply to the femoral head was reconstructed by anastomosing the femoral head vessels. One week later, blood flow in the femoral head was observed by borehole, digital subtraction angiography examination, and hematoxylin and eosin staining. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling tests were performed to detect pathological changes in the femoral head. Results: After one-week, digital subtraction angiography of the femoral head revealed a blood circulation rate of 70 %, and the blood seepage rate of the borehole was 80 %. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling test results showed that necrosis of bone marrow cells in the experimental group was significantly improved compared to that in the control group. Discussion: This study highlights the potential benefits of femoral head intraosseous vascular anastomosis in the treatment of porcine sub-capital femoral neck fractures. Further research and clinical trials are warranted to validate these findings and to explore the translational potential of this technique in human patients.

19.
Hypertension ; 81(4): 752-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38174563

RESUMO

Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.


Assuntos
Hipertensão , Superóxidos , Humanos , Superóxidos/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipertensão/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
20.
J Biomed Mater Res A ; 112(6): 866-880, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189109

RESUMO

For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.


Assuntos
Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular , Humanos , Suínos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Materiais Biocompatíveis/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...